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independent synthesized 8 by photolyzing an alkaline alcoholic 
solution of 2-benzonorbornenone tosylhydrazone, a reaction 
known to produce carbenium ions11 (i.e., II).13 

The aryl-sensitized reactivity at the 2 position is not unique 
to a chloro substituent, for photolysis of the mesylate (3) at 254 
nm14 likewise results in cleavage (eq 4). (In this case, facile 
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Sir: 

Though the enhanced ground-state solvolyses rates of exo-
2-substituted benzonorbornenyl derivatives are well docu­
mented,2 the photochemical properties of these compounds 
have not hitherto been studied. We have been examining such 
compounds as part of our ongoing program in the photo­
chemistry of bichromophoric molecules,1-3 and have observed 
that (1) photolysis of 2-benzonorbornenyl chlorides and 
mesylates (1-3) with 254-nm light results in cleavage of the 
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C-Cl or C-O bonds, (2) there is a remarkable stereoelectronic 
preference for reaction at the exo position, and (3) one of the 
reaction paths involves a novel 1,2 shift of the C? bridge. 

Although the So -* Si (E$2U) transition of 1 is only slightly 
perturbed by comparison with that of benzonorbornene (4),4 

and the C-Cl bond is virtually transparent at 254 nm,5 pho­
tolysis of an argon-degassed 0.015 M cyclohexane solution of 
1 at this wavelength results in the efficient loss of starting 
material (eq I).6 Under these photolytic conditions, exo-2-
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norbornyl chloride is photoinert, whether irradiated alone or 
in the presence of toluene. More striking is the 20-fold reduc­
tion in reactivity for the endo isomer (2), with 4><as = 0.013! 
(Compounds 4, 5, and HCl are again formed.) 

The free-radical chemistry evident in eq 1 becomes admixed 
with ionic chemistry when 1 is photolyzed in methanol (eq 2; 

R 
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note that $dis increases markedly).7 Compound 88 is the most 
unusual of the products formed, being an apparent conse­
quence of a hitherto unobserved 1,2 migration of the C9 bridge 
in the 2-benzonorbornenyl cation, 11 (eq 3).10 Though bridge 
migration does not occur in ground-state solvolyses,2-12 we have 

254 nm 
t-BuOH 

0.043 

ground-state solvolysis in methanol requires that rm-butyl 
alcohol be used for the photochemical experiment; 0dis for 1 
in /-BuOH is 0.38.) As with the chlorides, there is a large de­
crease in reactivity for the endo isomer of 3. 

There are a number of observations in the literature which 
are potentially related to this report. These include (1) the 
aryl-assisted photosolvolysis of 2-(3,5-dimethoxyphenyl)ethyl 
mesylate,15 (2) the facile benzylic cleavage which occurs upon 
photolysis of various <j> CH2X species,16 including benzyl 
chloride,17 and (3) the radical and ionic products which result 
from the direct photolysis of alkyl bromides and iodides.18 The 
most interesting mechanistic questions arising from these 
studies involve the excited state(s) responsible for ion forma­
tion '9 and the question of concomitant homolytic and hetero-
lytic cleavage20 vs. a sequential mechanism (wherein electron 
transfer occurs within an initially formed radical pair).18 Our 
data which bear on these points and on the manner by which 
energy is transmitted to the C2-X bond21 will be discussed in 
the full paper. 
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trones of this type can be produced in good yield by rational 
chemical pathways and, moreover, that they are relatively 
stable and undergo the 1,3-dipolar cycloaddition reactions 
characteristic of their nonfunctionalized counterparts. We have 
been particularly concerned with the efficient generation of 
cyclic a-keto nitrones or their functional equivalents. 

A motivating influence on our interest in cyclic a-keto ni­
trones stems from a desire to design a synthesis of ^/-retro­
necine,3 the most widely occurring4 of the necine bases,5 which, 
because of its center of unsaturation, exhibits marked hepa-
totoxic and antitumor properties.6'7 

Indeed, the macrocyclic lactones (e.g., senecionine) derived 
from this base display the most profound antitumor activity 
in the entire Senecio class of alkaloids.7 It should be noted that 
the most important physiological activity rests with those 
pyrrolizidine alkaloids derived from necine bases having a 
double bond between C-I and C-2 (e.g., supinidine (2a), 
retronecine (2b), and heliotridene (2c)). 

Although we have previously demonstrated13 that dl-
supinidine (2a) can be assembled from a simple, unfunction-
alized nitrone precursor, the synthesis of <//-retronecine (2b) 
demands the involvement of a functionalized nitrone in order 
to make provision for the hydroxyl group at C-7. Clearly, 3-
keto-1-pyrroline 1-oxide (1) could provide a point of departure 
for our synthesis of 2b. Unfortunately, we were aware from the 
outset of the possible isomerization of 1 to its hydroxypyrrole 
tautomer 3. Thus, we chose to circumnavigate this potential 
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OH 

difficulty by focusing our initial efforts on a functional 
equivalent of 1, namely the nitrone ketal 4. We considered that 
efforts to generate 4 from the corresponding hydroxylamine 
6 must confront the problem of regiochemistry (i.e., the pos­
sible production of mixtures of 4 and 5); however, we expected 
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Functionalized Nitrones. A Highly Stereoselective 
and Regioselective Synthesis of (//-Retronecine 

Sir: 

The use of nitrones in organic synthesis has developed quite 
rapidly in recent years;' however, while the use of functionally 
modified cyclic nitrones (e.g. 1) appears to offer an increased 

o .CH2OH 

2 £ , X = Y = H 
b , X = H , Y = OH 
c , X = OH, Y = H 

synthetic potential, the fact that such nitrones have not been 
so utilized reflects the problems associated with their prepa­
ration.2 One objective of this report is to note that certain ni-

that the desired nitrone would predominate.8 Thus, we trans­
formed A^-ethylpyrrolidin-S-one9 into the corresponding di­
methyl ketal (methyl orthoformate, HCl, MeOH), and thence 
into the hydroxylamine 6 according to the usual N-oxidation, 
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Cope elimination sequence.Ia To our pleasant surprise, the 
mercuric oxide mediated oxidation of 6 proceeded regiospe-
cifically to give nitrone 4 (97%), which exhibits typical ab­
sorptions at 6.25 and 7.2 fi (IR). The NMR spectrum (CDCl3, 
100 MHz) displays signals at <5 7.12 (t, 1 H, J ==• 1.5 Hz), 4.06 
(dt, 2 H, J = 7 Hz, 1.5 Hz), 3.28 (s, 6), and 2.4 ppm (t, 2 H, 
J = I Hz) entirely consistent with the structural assignment. 
This remarkable selectivity may be related to a diminution of 
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